

Modifications and Future Plans for the TCS RMF FRC Facility

Alan Hoffman

Redmond Plasma Physics Laboratory University of Washington

> (CT2004) (September 14-16, 2004)

Outline

- Previous TCS and overall performance
- ◆ TCS/mod
- Neutral Beam considerations
- Coaxial Slow Source addition

TCS Facility

TCS RMF generation & sustainment

LSX/mod (formation & 'acceleration')

- LSX/mod was half-size version of TCS to allow for acceleration section
- ◆ TCS utilized 2 of the 1.25-m long, 80-cm diameter LSX quartz tubes
- Joined with O-ring sealed plastic section for central diagnostic access

Schematic of TCS Confinement Coils and RFM Antennas

- •Use of flux conserving coils yields $B_e = B_o/(1-x_s^2)$
- •FRC will expand radially until limited by high B_e

Standard Model of RMF Current Drive in FRCs

RMF Force

 $\text{ne}\langle -v_{ez}B_{r}\rangle$

RMF *self-consistently* penetrates just far enough, $\Delta r \sim (B_e/\mu_o)/n_e e\omega r_s$ to maintain the diamagnetic current. Poloidal flux will increase as long as the RMF torque on the electrons exceeds the torque due to electron-ion drag (resistivity)

$$T_{RMF} = 2\pi r_s \ell_{ant} \left(B_{\omega}^2 / \mu_o \right) \Delta r$$
 $T_{\eta} = 0.5\pi \eta_{\perp} \left\langle n_e^2 e^2 \omega_e \right\rangle r_s^4 \ell_s$

$$\frac{d\phi_p}{dt} = 2\pi R E_{\theta}(R) = \frac{2}{n_e e r_s^2 \ell_s} \left(T_{RMF} - T_{\eta} \right)$$

$$E_{\theta} = \eta_{\perp} j_{\theta} + \left\langle -\widetilde{\mathbf{V}}_{ez} \widetilde{\mathbf{B}}_{r} \right\rangle + V_{r} B_{z} - V_{z} B_{r}$$

Outer:

Inner:

FRC Ends

Outer: _

Inner:

$$B_e = B_o/(1-x_s^2) \propto (n_e T_t)^{1/2}$$

RMF Penetration Movies

Vacuum **calculation** in lab frame of reference

Plasma **calculation** in RMF frame of reference. (Calculation needs to start from already formed FRC)

Plasma **measurement** in RMF frame of reference

Long Pulse Lengths Sustained by Recycling

- After first 0.5 msec, plasma conditions mostly independent of fill gas pressure (and to some extent composition).
- After ~4 msec, transition seen to higher performance mode (lower overall resistivity).
- No sign seen of tilting, but rotational n=2 distortion will develop due to overall RMF induced rotation as B_{ω} (which provides strong inward stabilizing force) decreases.

Resistivities Inferred from Double RR Model

$$\eta_{RR} = \frac{B_{\omega}^2(\delta^*/r_s)(\ell_a/\ell_s)}{\tanh K_{RR}(1 - \frac{1}{3}\tanh^2 K_{RR})n_m eB_e}$$

$$\eta_{RR} = \frac{B_{\omega}^{2}(\delta^{*}/r_{s})(\ell_{a}/\ell_{s})}{\tanh K_{RR}(1 - \frac{1}{3}\tanh^{2}K_{RR})n_{m}eB_{e}} \qquad \eta_{pabs} = \frac{P_{abs\theta}}{2\pi\tanh K_{RR}(1 - \frac{1}{3}\tanh^{3}K_{RR})n_{m}e(B_{e}/\mu_{o})r_{s}^{2}\ell_{s}}$$

DRR Model

Data in red is high performance mode

Shot	δ^*/r_s	$n_{ m m}$	η_{RR}	$\eta_{ m pabs}$	η_{inner}	$\eta_{ ext{outer}}$
	_	(10^{19}m^{-3})	$(\mu\Omega-m)$	$(\mu\Omega-m)$	$(\mu\Omega-m)$	$(\mu\Omega-m)$
12939 0.4 ms	0.16	1.70	109	260	30	235
4.7 ms	0.21	1.05	209	432	95	393
5.3 ms	0.185	1.26	124	393	3	357
9.3 ms	0.195	1.21	97	347	21	347
12889 6.3 ms	0.23	0.95	269	425	204	291
7.0 ms	0.18	1.10	136	345	28	394
12951 4.2 ms	0.21	1.12	212	404	127	333
5.0 ms	0.18	1.38	114	349	3	351

Double RR Resistivity Values

Profile Changes & B_z Frequency Content During Long Pulse Operation

TCS Temperature (and Flux) Limited in Present Experiments – at least partially by impurities

- Need to increase ϕ_p from ~2 mWb flux in TCS to ~6 mWb and B_e from 15 to 50 mT for efficient TNBI trapping. This will happen automatically with RMF formation if temperature increases.
- Applying more RMF power in present device results in initially higher T_t and B_e. n_e remains proportional to B_ω, but temperature drops rapidly as P_{rad} increases.

Operation at High $\omega = 1.62 \times 10^6 \text{ s}^{-1}$ and Low B_{ω}

Modifications Underway on TCS to Reduce Impurity Level and Radiative Losses

- Larger, metal input section to avoid translated FRC contact with quartz.
- Protective flux rings (possibly tantalum coated) under quartz RMF drive section.
- Elimination of "O-rings" to allow bakeout and discharge cleaning.
- Combination of Ti-gettering and wall conditioning (siliconization?).

Reduction of P_{rad} will allow examination of non-radiatively limited τ_E .

PPR

Formation of High Beta Plasmas

- It is extremely difficult to form high β plasmas if E_{in} occurs on same timescale as $B_p^2/2\mu_o$ build-up. Plasma pressure must always track $B_p^2/2\mu_o$ and this can be mostly n rather than T unless thermal losses are small.
 - Impurity radiation imposes significant barrier to temperature rise below 100 eV.
 - Strong shock heating or fast resistive dissipation in theta-pinches, and to some extent in spheromak merging, can overcome this barrier.
- Rotating Magnetic Fields can form low density FRCs, but the 100 eV temperature barrier can only be exceeded if extreme care is taken in minimizing C and O impurities.
 - Theta-pinch formed, translated, and expanded FRCs can provide initial high temperatures if wall contact can be minimized.
 - Neutral beams can independently heat and sustain FRCs, but available powers are low.
- ◆ The Coaxial Slow Source (CSS) is an old idea for forming FRCs on slower timescales.
 - Since $P_{abs} \propto \eta(B_p/r)^2$ and $P_{rad} \propto n_{imp} n_e \propto f_i (B_p^2/T_t)^2$, if we rely on ohmic heating, the poloidal field must be increased slowly to give the temperature time to increase and avoid radiative collapse.
 - We can start at low density using RMF initiation.

Tangential Neutral Beam Injection can Provide Current Drive near Field Null

- ◆ FRC must have sufficient flux to confine azimuthal highenergy ion velocity inside field null.
- ♦ Mostly axial injection can result in even larger excursions beyond separatrix, and will always result in wall contact for high x_s FRCs.
- Tangential injection is most effective near, or slightly outside field null.
- High-energy ions will spread axially, even with minimal initial axial velocity component.

TNBI near Field Null (Need about 5 mWb of flux)

Ideal energies < E_{ic} , but can operate with $E_{i} \sim 2E_{ic}$.

10 keV (2E_{ic}) TNBI calculations by Ricardo Farengo to set immediate TCS/mod goals. Nuclear Fusion **44**, 1015 (2004).

	TCS/mod goals	'Reactor'	
φ _p (mWb)	6	3000	
$B_{e}(T)$	0.08	1.2	
r _s (m)	0.3	2.0	
T _e (keV)	0.14	10	
$n_e(10^{20} \text{ m}^{-3})$	0.5	1.0	
A _i beam	1	3	
$E_i(r_s)$	25 keV	100 MeV	
E _{ic}	5 keV	20 MeV	

 $\phi_p \sim 2$ mWb in present TCS

Coaxial Slow Source (CSS) can Add Energy and Increase Flux.

Two Modes of Operation:

- Fast, high voltage: $t_{1/4} \ll \tau_{L/R}$ of FRC.
 - » All inner coil flux will be transferred to FRC.
- Slow, multi-turn coils: $t_{1/4} >> \tau_{L/R}$ of FRC.
 - » FRC current will be equal to $(V/N)_{coil}/R_{FRC}$.

CSS Flux Build-Up & Sustainment of RMF Generated FRC

SPICE Circuit Modeling

SPICE CSS calculation for 1 m Ω FRC driven by 40-turn, 5 kV solenoid

Initial bias (I_2) applied so that there is \sim zero field inside flux rings at time of plasma initiation.

125 V/turn generates \sim 125 kA in 1 m Ω FRC. Applied power \sim 15 MW. Equilibrium field \sim 75 mT and equilibrium flux ~20 mWb

CSS 2-D Calculation

Summary

- ◆ TCS has formed and maintained FRCs using RMF, but the radiation levels are high and the temperatures low.
- ◆ RMF drive results in high FRC edge resistivities, but may be very useful for stabilizing instabilities and producing low interior resistivities. *It is probably not a stand alone current drive mechanism*.
- ◆ TCS/mod is being constructed to provide a clean, bakable vacuum system.
- ♦ Both TNBI and flux core additions are being considered for future utilization.